The future belongs to biomaterials. How designers are taking up the challenge
Composition Blast
From fashion to design, from architecture to construction, biomaterials and their applications are constantly multiplying. And designers are responding to this revolution in many different ways.
Taking note of recent proposals on the international stage, it’s clear that the future – at least the near future – belongs to biobased materials inspired by the world of design. The sheer number and wealth of experiences through which the world of design is joining forces with the research and development of bioalternatives to synthetic products indicates a bright future for biomaterials. Is this just fruit of a temporary infatuation on the part of the design world or is it a harbinger of something more significant?
Rapid progress in biomanufacturing is one of the drivers of this trend. This new frontier in material science allows for the production of biobased products starting from very specific raw materials. These include cells, molecules or extracellular matrices, some even deriving from human skin. Production can go far beyond natural materials that have been known for millennia such as natural textiles, leather, wood and paper, which all derive from animals and plants.
Biomaterial science and cellular biology have been at work for a long time to make biomanufacturing technology widely available. The main field of interest is medicine, where the technology is essential in studying and preventing rare diseases.
Furthermore, these technologies provide a valid alternative to synthetic materials that will be used by the biofuels industry to produce sustainable energy in the future. In addition, it’s worth remembering that they’re also useful in developing agricultural and food products that don’t use animal parts or products, necessary given the expansion of veganism.
Less in the spotlight is how biomanufactured technologies are being employed to create biobased design materials with applications in construction, architecture and industrial design.
Biomaterials that have emerged from the design world
In some cases, the practice of design itself has led to experiments in which biologists, engineers and designers have created new, “design-driven” materials.
Modern Meadow
Modern Meadow is probably the most important example of this trend. The US design and research studio is a global pioneer in biomanufacturing advanced materials whose specific purpose is to offer new design possibilities. It was founded with the conviction that “multidisciplinary collaboration between design, biology and material science can lead to smarter ways to make evolved materials, inspired by nature and grown of life’s essential elements: cells, DNA and protein”.
Scientist and professor, Robin E. Bell says “I think it’s pretty cool when I can wear my science.” #sdgstudyhall@theslowfactory
This design and applied research studio based in Brooklyn, New York City has created the Zoa brand, a family of innovative materials based on a collagen protein tailor-made in the company’s lab. Among other things, this protein has spawned a new and completely biomanufactured material inspired by animal skin, dubbed liquid leather because of its distinctive versatility.
BioFaber
Italian startup BioFaber, based in the region of Puglia, was launched with the intent of creating new nano-structured biomaterials based on bacterial cellulose.
The bio-company led by designer Mariangela Stoppa is a perfect example of the circular economy in action: the production process is based on the symbiosis between bacteria and fungi already present in many food products.
The transformation happens in an aqueous culture enriched with sugars from food waste such as molasses and olive residues, which are used by the microorganisms to synthesise the nanostructured cellulose. The latter self-assembles at room temperature and atmospheric pressure in a matter of weeks.
A nano-structured, biocompatible polymer emerges, one that can be customised to have particular traits. If necessary, it can be odourless, sterilised or hydrophobic.
From this technological starting point, the Brindisi-based company has created a sustainable material that in certain cases can replace use of animal skin and, in its hydrogel form, a series of materials aimed at the medical and biocosmetic sectors.
We need regulation changes in the textile and leather industry when it comes to coloring and dyeing fabrics and there is a small concentration of suppliers worldwide – Karin Fleck of the #ViennaTextileLab on stage at @Biofabricate_
It must be noted that the tendency to introduce bio-generated products isn’t limited to design, and extends to the world of fashion. In certain ways, biomaterials have a higher likelihood of being applied in this field given that the required performance characteristics are technologically less complex.
Launch Fabric, led by designer Suzanne Lee (Creative Director of Modern Meadow), is an offshoot of Launch, a US innovation platform that was founded to identify and promote innovative ideas for a more sustainable world. Launch Fabric’s biocouture projects have been developed in collaboration with NASA, Nike and Ikea (just to name a few) to enhance the circular economy in the world of fashion, with biobased materials playing a key role.
Lee is known mainly for Biofabricate, a consultancy whose team of designers and organic science experts works in the United States and United Kingdom. The company helps institutions and businesses introduce biomanufactured materials into the production of sustainable products.
Industry is also rich in concrete experiences in biomanufactured materials and technology, although these have generally been limited to special projects.
Amsilk
Such is Adidas’ case. It was one of the first companies to commit to this direction by introducing Biosteel fibres developed by German industrial supplier Amsilk into the manufacturing of its shoes. The silk-like biopolymer is obtained by decoding spider DNA then applied to a bacterium. Adidas has also produced a tennis outfit in biofabric, but it’s still a prototype.
Spiber
Meanwhile, Japanese biotech startup Spiber has began selling the first sports garment in the world made entirely from synthetic silk: the Moon Parka, developed in collaboration with The North Face, was released on the market as a limited fifty-piece edition.
Textiles, automotive, and medicine are the three domains where we will see @spiberfiber used. #NewHarvest2016 what a time to be alive!
Design universities as incubators for biomaterials
In many European cities design schools offer Master’s courses dedicated to the materials of the future and around the world, design universities are becoming incubators for innovation in this field. It’s in this context that an increasing number of courses are being offered to young designers to work on the development of low-impact materials by collaborating with biologists, chemists and researchers.
An ever-growing number of design students choose to pursue Master’s and PhDs in the development of new biobased materials. As has happened more frequently in recent years, the creation of startups and experimental labs within design schools is promoted via special contests and public grants. Most designers attending these innovation accelerators might seem like bricoleurs, amateurs in a new age, but it’s likely that they’re truly the heroic vanguard trying, on their own, to do what heavy industry has failed to do up to this point.
Green Lab, open to individual designers, organisations and companies, is one such places. Based in Bermondsey, in West London, it was created as an incubator for bio-circular economies, to develop and experiment in the ambit of unexplored aspects of the food chain, waste processing and the biosphere. In the past few years, it has benefited from contributions by many young designers with Master’s degrees in the subject of Future Materials. As well being a hub to connect with key sustainability players in the UK, the lab also provides biodesigners with a Grow Lab where they can develop biomaterials, as well as “DIY” utensils and spaces in which to archive projects and experiments.
It isn’t rare for profitable startups that give birth to new, alternative supplies for semi-manufactured and finished products to emerge in this context, although their reach tends to be mostly local.
Startups experimenting with biomaterials
Ponto Biodesign
Guatemalan designer Elena Amato explored the topic of biomaterials in her Design degree dissertation. She has now joined forces with researcher Caroline Pagnan to create Ponto Biodesign, an experimental bio-manufacturing lab.
The goal was to develop packaging from bacterial cellulose for the cosmetics sector. A new raw material was created by mixing bacteria and yeast cultures with water, then drying and processing them to create a sheet halfway between paper and plastic. These new materials, which designers source and create locally, further reduce the impact of transporting raw materials.
Totomoxtle
This is exactly what Mexican designer Fernando Laposse did a few years ago when he created Totomoxtle. This new veneer material is obtained from the shells of Mexican maize – which has become the symbol of diversity in native seed varieties – processed locally through simple technology.
There are many examples along these line and many sectors are being affected by this revolution: from the world of textiles and fashion, to footwear and sports equipment; from packaging, to interior design, to architecture. At the design weeks in London and Amsterdam this year there was a distinct feeling that young European design is cultivating an aptitude for promoting investment in biobased materials.
Designers as developers and self-producers
Young designers are the new alchemists. They define goals that set innovation challenges, create their own laboratories, work with chemists and researchers, and experiment to reach the results they’ve set themselves. In other words, they self-produce new materials, determining their structural and aesthetic characteristics. They decide what to create them from – nature or recycling – and how to transform them, cultivating alternative solutions to traditional materials that are environmentally weak or unable to adapt to new needs.
Lindsay Ann Hanson was still a design student when she developed the Immunotex project together with Margot Vaaderpass and Zaki Musa for the yearly Biodesign Challenge organised by London arts university Central Saint Martins. Immunotex is a travel clothing startup: it creates clothes and footwear designed to protect travellers from the growing threat of antibiotic-resistant bacteria. Its experiments have led to the Resistance Runner project, in which sports shoes are made from biobased fabrics that use bacteriocins to protect wearers from potential contamination.
It’s a well-known fact that in recent years antibiotic-resistant bacteria have been emerging more prominently, posing a significant public health threat in the years to come. In this context, bacteriocins – substances produced by some bacteria that are able to combat the growth of phylogenetically similar bacteria – are being explored as alternatives to traditional antibiotics in factory farming and used in methods to contrast food contamination.
On the other hand, biodesigner Jen Keane has developed an interesting “microbial weaving” process by manipulating the growth of k. rhaeticus, a type of bacteria typically found in kombucha tea. The resulting material is a synthetic fibre stronger than steel and more resistant than Kevlar. This new material is customisable and completely compostable, and has allowed Keane to create a prototype of biobased sports shoes that she presented as part of the This Is Grown project.
Subsequently, Keane and synthetic biologist Marcus Walzer developed a bacterium that is self-dyeing, meaning it can create cellulose and melanin. This allowed for the development of This Is Grown, the first sneaker upper that can be “grown”; weaved and dyed by a single genetically modified organism. The material is 100 per cent compostable and entirely free of synthetic materials and dyes. The project was exhibited by The Mills Fabrica in Hong Kong, an open platform to facilitate collaboration between startups, brands, sellers and research institutes.
Jonas Edvard, a Danish designer and artist who experiments with natural raw materials, has perfected a material he calls Gesso, derived from the great Nordic coral reefs, a natural mineral deposit extending over 2,000 square metres that contains high-value limestone as well as a large quantity of ancient fossils, buried among its multiple white layers. Coral limestone is usually extracted, ground and turned into construction blocks, cement and fertiliser. Edvard instead has derived a completely natural limestone composite from it, made of calcium carbonate, an organic binder and some pigments. He uses this material to self-produce furniture and lamps in Denmark.
Even food waste can become biomaterials
Food processing waste also offers a wealth of possibilities that will fuel localised self-production in the future. The exploration of this frontier has already spawned new and unexpected materials.
In the UK, Blast Studio (Biological Laboratory of Architecture and Sensitive Technologies) has developed a project in which the pulp from recycled coffee cups collected in London is reborn thanks to fungi’s mycelium. Through this process waste is transformed into an organic material that can be used to make furniture and objects. To allow the pulp to be consumable by mycelium, Blast designs winged objects that can retain humidity, enabling the fungus to grow and generate the novel biomaterial.
Another UK-based designer, Atticus Durnell, is behind That’s Caffeine, a material made from used coffee grounds aggregated with organic binders, minerals and a plant-based resin. Its light, biodegradable, water-resistant as well as heatproof, and Durnel shapes it using traditional tools like buzz saws, or uses moulds to craft objects that he then sells online.
Biomaterials from eggshells
Young designer Midushi Kochhar has experimented with the transformation of eggshells from the catering industry. With this chalky waste she creates biodegradable, single-use crockery as an alternative to plastic, which is often used to serve street food. With the right treatment this material might even have other applications, such as the creation of panelling for interiors, furniture and to be used in construction.
Biomaterials from oranges
A few years ago, Italian startup Orange Fiber patented and began producing a biomaterial made from processing the waste from Sicilian citrus fruits. It became one of the first completely sustainable textile products in the world: a gossamer fabric, soft and very similar to silk, perfect for low-impact fashion. In a field as collaborative and inclusive as that of new generation design, these “brand-materials” represent business models to be shared widely so that others can reproduce and develop them elsewhere.
And then there’s mycelium
The regeneration of food processing waste isn’t only a resource; it represents something much larger. Scaling up from the local to the global could occur quickly as the raw materials needed for mass production of biomaterials from this kind of waste are available in abundance. A new protagonist in the future of biobased materials is already emerging: mycelium.
Biologically speaking, it’s the vegetative part of fungi. It’s made up of a dense tangle of filaments that are conduits for protoplasm, which is made up of amino acids, proteins, lipids and polysaccharides. The material that originates from it can be considered a full-fledged polymer. The advantage of mycelium is that it performs the irreplaceable role of being a natural aggregator, which explains researchers’ and designers’ interest towards it as this functions allows for the creation of new materials from organic waste. In fact, fungi tend to grow on any organic matter that contains cellulose, a natural sugar-based polysaccharide which they consume.
Mogu
The use of mycelium to create biomaterials for architecture and interior design is being explored by Mogu, a European company that resulted from a merger between an Italian and a Dutch startup, which is based in the Italian province of Varese. It specialises in the design of materials generated by fungi that consume organic waste.
Founded by Maurizio Montalti with Stefano Rabbini, Federico Grati and Natalia Piatti, Mogu recently developed highly resilient, zero-impactacoustic and paving panels that are completely biodegradable and exclusively based on organic substances. The result of five years of research and development, the biomaterials are obtained by cultivating mycelium on organic agricultural and food waste that has been purified from microorganisms that would otherwise damage the fungus’ growth.
Ecovative
Ecovative, a startup based in New York, USA, also works with mycelium from fungi originating from food waste. Using materials from this same family, Ecovative has created Mycocomposite, a type of packaging that presents itself as an alternative to polystyrene. It takes about ten days for the raw material to develop and become stable at which point it’s ground and can either be moulded or grown directly in ad-hoc moulds to obtain a flexible, light, shock-absorbing, fire and water-resistant material.
Here at Ecovative, we are combining the old with the new – we are taking our Mushroom® Packaging that has been in our facility for nearly a decade and transferring our production equipment to a facility 4x the size in Paradise, California. ▸ https://t.co/zydeszaRL9#oceanpic.twitter.com/RmVvqPbJ21
Developed in 2007, Mycocomposite is a high-performance packaging material, completely biobased and C2C Gold certified, a mark of distinction for alternative and circular productions. It’s been used by various companies, including Ikea, to reduce their environmental impact.
Even bioplastics can originate from biomaterials
Finally, we mustn’t forget that the world of contemporary ecodesign also embraces natural-origin bioplastics, materials derived from microorganisms exposed to specific cellular stress conditions. These are also the object of experimentations and research because they represent a new generation of circular plastics, with aesthetic as well as use value, which can meet conscientious consumer choice principles.
The advantage of biomanufacturing is undeniable: it offers an increasing amount of valid alternatives to an industry accustomed to using synthetic materials. As things stand, the latter have no future because of their environmental impact, therefore they must be revisited and substituted. Furthermore, the interest designers and businesses are demonstrating in biomaterials offers positive signals from a qualitative perspective as well.
History, however, teaches us to be cautious.
Synthetic materials were developed as an alternative to natural materials inadequate for industrial production. Today, in a world where natureis providing the alternatives, we can’t ignore the fact that no one knows exactly what will happen if these types of materials take hold on a much larger scale.
The cultivation of materials requires us, at least, to question whether a mass transition to biobased products will really allow industry and society not only to restore, but, most importantly, preserve a new environmental balance that can meet the requirements of the future.
The book Fashion Industry 2030 aims to contribute to reshaping the future through sustainability and responsible innovation. An exclusive opportunity to read its introduction.
Victor Papanek spearheaded social and sustainable design based on political awareness rather than consumerism. A biography of the author of Design for the Real World.
Two world-famous designers, Ross Lovegrove and Marcel Wanders, on the relationship between plastic and design. The stimulus for this conversation was offered by an exhibition at the past Milan Design Week inviting 29 designers to rethink their approach to this (now) demonised material.
Getting people to consume less is important, but it’s not enough. There has to be a cultural shift, and design is likely to have a key role in transforming our approach to plastics.
Yona Friedman is a visionary and innovative architect and theorist. We met him during the inauguration of the installation he made in occasion of the Milan Design Week.